Files
AFFiNE-Mirror/packages/backend/server/src/plugins/copilot/embedding/client.ts
DarkSky 2052a34d19 chore(server): add detail for error (#13151)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **New Features**
* Error messages for unavailable copilot providers now include specific
model IDs for clearer context.
* Added new detailed error messages for embedding generation failures
specifying provider and error details.
* The API and GraphQL schema have been extended with new error types
reflecting these detailed error cases.

* **Bug Fixes**
* Enhanced error handling to detect and report incomplete or missing
embeddings from providers.
* Added safeguards to skip embedding insertions when no embeddings are
provided, preventing unnecessary processing.

* **Documentation**
* Updated localization and translation keys to support dynamic error
messages with model IDs and provider details.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-07-11 05:55:10 +00:00

235 lines
6.9 KiB
TypeScript

import { Logger } from '@nestjs/common';
import type { ModuleRef } from '@nestjs/core';
import {
CopilotPromptNotFound,
CopilotProviderNotSupported,
} from '../../../base';
import { CopilotFailedToGenerateEmbedding } from '../../../base/error/errors.gen';
import { ChunkSimilarity, Embedding } from '../../../models';
import { PromptService } from '../prompt';
import {
type CopilotProvider,
CopilotProviderFactory,
type ModelFullConditions,
ModelInputType,
ModelOutputType,
} from '../providers';
import {
EMBEDDING_DIMENSIONS,
EmbeddingClient,
type ReRankResult,
} from './types';
const EMBEDDING_MODEL = 'gemini-embedding-001';
const RERANK_PROMPT = 'Rerank results';
class ProductionEmbeddingClient extends EmbeddingClient {
private readonly logger = new Logger(ProductionEmbeddingClient.name);
constructor(
private readonly providerFactory: CopilotProviderFactory,
private readonly prompt: PromptService
) {
super();
}
override async configured(): Promise<boolean> {
const embedding = await this.providerFactory.getProvider({
modelId: EMBEDDING_MODEL,
outputType: ModelOutputType.Embedding,
});
const result = Boolean(embedding);
if (!result) {
this.logger.warn(
'Copilot embedding client is not configured properly, please check your configuration.'
);
}
return result;
}
private async getProvider(
cond: ModelFullConditions
): Promise<CopilotProvider> {
const provider = await this.providerFactory.getProvider(cond);
if (!provider) {
throw new CopilotProviderNotSupported({
provider: 'embedding',
kind: cond.outputType || 'embedding',
});
}
return provider;
}
async getEmbeddings(input: string[]): Promise<Embedding[]> {
const provider = await this.getProvider({
modelId: EMBEDDING_MODEL,
outputType: ModelOutputType.Embedding,
});
this.logger.verbose(
`Using provider ${provider.type} for embedding: ${input.join(', ')}`
);
const embeddings = await provider.embedding(
{ inputTypes: [ModelInputType.Text] },
input,
{ dimensions: EMBEDDING_DIMENSIONS }
);
if (embeddings.length !== input.length) {
throw new CopilotFailedToGenerateEmbedding({
provider: provider.type,
message: `Expected ${input.length} embeddings, got ${embeddings.length}`,
});
}
return Array.from(embeddings.entries()).map(([index, embedding]) => ({
index,
embedding,
content: input[index],
}));
}
private getTargetId<T extends ChunkSimilarity>(embedding: T) {
return 'docId' in embedding && typeof embedding.docId === 'string'
? embedding.docId
: 'fileId' in embedding && typeof embedding.fileId === 'string'
? embedding.fileId
: '';
}
private async getEmbeddingRelevance<
Chunk extends ChunkSimilarity = ChunkSimilarity,
>(
query: string,
embeddings: Chunk[],
signal?: AbortSignal
): Promise<ReRankResult> {
if (!embeddings.length) return [];
const prompt = await this.prompt.get(RERANK_PROMPT);
if (!prompt) {
throw new CopilotPromptNotFound({ name: RERANK_PROMPT });
}
const provider = await this.getProvider({ modelId: prompt.model });
const ranks = await provider.rerank(
{ modelId: prompt.model },
embeddings.map(e => prompt.finish({ query, doc: e.content })),
{ signal }
);
try {
return ranks.map((score, i) => {
const chunk = embeddings[i];
return {
chunk: chunk.chunk,
targetId: this.getTargetId(chunk),
score: Math.max(score, 1 - (chunk.distance || -Infinity)),
};
});
} catch (error) {
this.logger.error('Failed to parse rerank results', error);
// silent error, will fallback to default sorting in parent method
return [];
}
}
override async reRank<Chunk extends ChunkSimilarity = ChunkSimilarity>(
query: string,
embeddings: Chunk[],
topK: number,
signal?: AbortSignal
): Promise<Chunk[]> {
// search in context and workspace may find same chunks, de-duplicate them
const { deduped: dedupedEmbeddings } = embeddings.reduce(
(acc, e) => {
const key = `${this.getTargetId(e)}:${e.chunk}`;
if (!acc.seen.has(key)) {
acc.seen.add(key);
acc.deduped.push(e);
}
return acc;
},
{ deduped: [] as Chunk[], seen: new Set<string>() }
);
const sortedEmbeddings = dedupedEmbeddings.toSorted(
(a, b) => (a.distance ?? Infinity) - (b.distance ?? Infinity)
);
const chunks = sortedEmbeddings.reduce(
(acc, e) => {
const targetId = this.getTargetId(e);
const key = `${targetId}:${e.chunk}`;
acc[key] = e;
return acc;
},
{} as Record<string, Chunk>
);
try {
// 4.1 mini's context windows large enough to handle all embeddings
const ranks = await this.getEmbeddingRelevance(
query,
sortedEmbeddings,
signal
);
if (sortedEmbeddings.length !== ranks.length) {
// llm return wrong result, fallback to default sorting
this.logger.warn(
`Batch size mismatch: expected ${sortedEmbeddings.length}, got ${ranks.length}`
);
return await super.reRank(query, dedupedEmbeddings, topK, signal);
}
const highConfidenceChunks = ranks
.flat()
.toSorted((a, b) => b.score - a.score)
.filter(r => r.score > 0.5)
.map(r => chunks[`${r.targetId}:${r.chunk}`])
.filter(Boolean);
this.logger.verbose(
`ReRank completed: ${highConfidenceChunks.length} high-confidence results found, total ${sortedEmbeddings.length} embeddings`,
highConfidenceChunks.length !== sortedEmbeddings.length
? JSON.stringify(ranks)
: undefined
);
return highConfidenceChunks.slice(0, topK);
} catch (error) {
this.logger.warn('ReRank failed, falling back to default sorting', error);
return await super.reRank(query, dedupedEmbeddings, topK, signal);
}
}
}
let EMBEDDING_CLIENT: EmbeddingClient | undefined;
export async function getEmbeddingClient(
moduleRef: ModuleRef
): Promise<EmbeddingClient | undefined> {
if (EMBEDDING_CLIENT) {
return EMBEDDING_CLIENT;
}
const providerFactory = moduleRef.get(CopilotProviderFactory, {
strict: false,
});
const prompt = moduleRef.get(PromptService, { strict: false });
const client = new ProductionEmbeddingClient(providerFactory, prompt);
if (await client.configured()) {
EMBEDDING_CLIENT = client;
}
return EMBEDDING_CLIENT;
}
export class MockEmbeddingClient extends EmbeddingClient {
async getEmbeddings(input: string[]): Promise<Embedding[]> {
return input.map((_, i) => ({
index: i,
content: input[i],
embedding: Array.from({ length: EMBEDDING_DIMENSIONS }, () =>
Math.random()
),
}));
}
}