Files
AFFiNE-Mirror/blocksuite/affine/shared/src/utils/figma-squircle/draw.ts

233 lines
5.9 KiB
TypeScript

interface CornerPathParams {
a: number;
b: number;
c: number;
d: number;
p: number;
cornerRadius: number;
arcSectionLength: number;
}
interface CornerParams {
cornerRadius: number;
cornerSmoothing: number;
preserveSmoothing: boolean;
roundingAndSmoothingBudget: number;
}
// The article from figma's blog
// https://www.figma.com/blog/desperately-seeking-squircles/
//
// The original code by MartinRGB
// https://github.com/MartinRGB/Figma_Squircles_Approximation/blob/bf29714aab58c54329f3ca130ffa16d39a2ff08c/js/rounded-corners.js#L64
export function getPathParamsForCorner({
cornerRadius,
cornerSmoothing,
preserveSmoothing,
roundingAndSmoothingBudget,
}: CornerParams): CornerPathParams {
// From figure 12.2 in the article
// p = (1 + cornerSmoothing) * q
// in this case q = R because theta = 90deg
let p = (1 + cornerSmoothing) * cornerRadius;
// When there's not enough space left (p > roundingAndSmoothingBudget), there are 2 options:
//
// 1. What figma's currently doing: limit the smoothing value to make sure p <= roundingAndSmoothingBudget
// But what this means is that at some point when cornerRadius is large enough,
// increasing the smoothing value wouldn't do anything
//
// 2. Keep the original smoothing value and use it to calculate the bezier curve normally,
// then adjust the control points to achieve similar curvature profile
//
// preserveSmoothing is a new option I added
//
// If preserveSmoothing is on then we'll just keep using the original smoothing value
// and adjust the bezier curve later
if (!preserveSmoothing) {
const maxCornerSmoothing = roundingAndSmoothingBudget / cornerRadius - 1;
cornerSmoothing = Math.min(cornerSmoothing, maxCornerSmoothing);
p = Math.min(p, roundingAndSmoothingBudget);
}
// In a normal rounded rectangle (cornerSmoothing = 0), this is 90
// The larger the smoothing, the smaller the arc
const arcMeasure = 90 * (1 - cornerSmoothing);
const arcSectionLength =
Math.sin(toRadians(arcMeasure / 2)) * cornerRadius * Math.sqrt(2);
// In the article this is the distance between 2 control points: P3 and P4
const angleAlpha = (90 - arcMeasure) / 2;
const p3ToP4Distance = cornerRadius * Math.tan(toRadians(angleAlpha / 2));
// a, b, c and d are from figure 11.1 in the article
const angleBeta = 45 * cornerSmoothing;
const c = p3ToP4Distance * Math.cos(toRadians(angleBeta));
const d = c * Math.tan(toRadians(angleBeta));
let b = (p - arcSectionLength - c - d) / 3;
let a = 2 * b;
// Adjust the P1 and P2 control points if there's not enough space left
if (preserveSmoothing && p > roundingAndSmoothingBudget) {
const p1ToP3MaxDistance =
roundingAndSmoothingBudget - d - arcSectionLength - c;
// Try to maintain some distance between P1 and P2 so the curve wouldn't look weird
const minA = p1ToP3MaxDistance / 6;
const maxB = p1ToP3MaxDistance - minA;
b = Math.min(b, maxB);
a = p1ToP3MaxDistance - b;
p = Math.min(p, roundingAndSmoothingBudget);
}
return {
a,
b,
c,
d,
p,
arcSectionLength,
cornerRadius,
};
}
interface SVGPathInput {
width: number;
height: number;
topRightPathParams: CornerPathParams;
bottomRightPathParams: CornerPathParams;
bottomLeftPathParams: CornerPathParams;
topLeftPathParams: CornerPathParams;
}
export function getSVGPathFromPathParams({
width,
height,
topLeftPathParams,
topRightPathParams,
bottomLeftPathParams,
bottomRightPathParams,
}: SVGPathInput) {
return `
M ${width - topRightPathParams.p} 0
${drawTopRightPath(topRightPathParams)}
L ${width} ${height - bottomRightPathParams.p}
${drawBottomRightPath(bottomRightPathParams)}
L ${bottomLeftPathParams.p} ${height}
${drawBottomLeftPath(bottomLeftPathParams)}
L 0 ${topLeftPathParams.p}
${drawTopLeftPath(topLeftPathParams)}
Z
`
.replace(/[\t\s\n]+/g, ' ')
.trim();
}
function drawTopRightPath({
cornerRadius,
a,
b,
c,
d,
p,
arcSectionLength,
}: CornerPathParams) {
if (cornerRadius) {
return rounded`
c ${a} 0 ${a + b} 0 ${a + b + c} ${d}
a ${cornerRadius} ${cornerRadius} 0 0 1 ${arcSectionLength} ${arcSectionLength}
c ${d} ${c}
${d} ${b + c}
${d} ${a + b + c}`;
} else {
return rounded`l ${p} 0`;
}
}
function drawBottomRightPath({
cornerRadius,
a,
b,
c,
d,
p,
arcSectionLength,
}: CornerPathParams) {
if (cornerRadius) {
return rounded`
c 0 ${a}
0 ${a + b}
${-d} ${a + b + c}
a ${cornerRadius} ${cornerRadius} 0 0 1 -${arcSectionLength} ${arcSectionLength}
c ${-c} ${d}
${-(b + c)} ${d}
${-(a + b + c)} ${d}`;
} else {
return rounded`l 0 ${p}`;
}
}
function drawBottomLeftPath({
cornerRadius,
a,
b,
c,
d,
p,
arcSectionLength,
}: CornerPathParams) {
if (cornerRadius) {
return rounded`
c ${-a} 0
${-(a + b)} 0
${-(a + b + c)} ${-d}
a ${cornerRadius} ${cornerRadius} 0 0 1 -${arcSectionLength} -${arcSectionLength}
c ${-d} ${-c}
${-d} ${-(b + c)}
${-d} ${-(a + b + c)}`;
} else {
return rounded`l ${-p} 0`;
}
}
function drawTopLeftPath({
cornerRadius,
a,
b,
c,
d,
p,
arcSectionLength,
}: CornerPathParams) {
if (cornerRadius) {
return rounded`
c 0 ${-a}
0 ${-(a + b)}
${d} ${-(a + b + c)}
a ${cornerRadius} ${cornerRadius} 0 0 1 ${arcSectionLength} -${arcSectionLength}
c ${c} ${-d}
${b + c} ${-d}
${a + b + c} ${-d}`;
} else {
return rounded`l 0 ${-p}`;
}
}
function toRadians(degrees: number) {
return (degrees * Math.PI) / 180;
}
function rounded(strings: TemplateStringsArray, ...values: number[]): string {
return strings.reduce((acc, str, i) => {
const value = values[i];
if (typeof value === 'number') {
return acc + str + value.toFixed(4);
} else {
return acc + str + (value ?? '');
}
}, '');
}